How to measure? Which scales exist?

\[S_x^c \quad \text{Scale name:} \quad \text{mathematical operations} \]

\[N_x^c \quad \text{Nominal scale:} \quad =, \neq \]

\[O_x \quad \text{Ordinal scale:} \quad =, \neq, >, < \]

\[I_x \quad \text{Interval scale:} \quad =, \neq, >, <, -, + \]

\[R_x \quad \text{Rational scale:} \quad =, \neq, >, <, -, +, \times, \div \]

\[S_x^c \quad S = \text{scale name [N, O, I, R]; x = number of this scale >1; c = number of categories for N-scale} \]

See further at

http://en.wikipedia.org/wiki/Scale_(measurement)
An easy example: measure of central tendency

- A way of summarising the data using a single value that is in some way representative of the entire data set
 - It is not always possible to follow the same procedure in producing a central representative value: this changes with the shape of the distribution

- **Mode** [recommended for N-scale]
 - Most frequent value
 - Does not take into account exact scores
 - Unaffected by extreme scores
 - Not useful when there are several values that occur equally often in a set
Measures of central tendency (cont’d)

– **Median** [recommended for O-scale]
 - The values that falls exactly in the midpoint of a ranked distribution
 - Does not take into account exact scores
 - Unaffected by extreme scores
 - In a small set it can be unrepresentative

– **Mean** (Arithmetic average) [recommended for I-scale]
 - Sample mean: \(M = \frac{\Sigma X}{n} \)
 Population mean: \(\mu = \frac{\Sigma X}{N} \)
 - Takes into account all values
 - Easily distorted by extreme values
Differences in means for N_1^2-scale and I_1-scale

- In order to know whether a difference between two means is important, we need to know how much the scores vary around the means.
Differences in means for N_1^2-scale and I_1-scale (cont’d)

- Holding the difference between the means constant
- With high variability the two groups nearly overlap
- With low variability the two groups show very little overlap
Scale combinations leads to inference methods

<table>
<thead>
<tr>
<th>Scales</th>
<th>Appropriate Inference Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N^2 \times N^2$</td>
<td>Fisher’s exact test; Odds Ratio</td>
</tr>
<tr>
<td>$N^c \times N^d$</td>
<td>CHI^2 (with $c>2$ and/or $d>2$)</td>
</tr>
<tr>
<td>$N^2 \times O$</td>
<td>Mann-Whitney-U-test</td>
</tr>
<tr>
<td>$N^2 \times I$</td>
<td>T-test</td>
</tr>
<tr>
<td>$N_x^c \times I$</td>
<td>[M]Anova (with $x>1$ and/or $c>2$)</td>
</tr>
<tr>
<td>$I_x \times N$</td>
<td>Discriminant analysis (with $x>1$)</td>
</tr>
<tr>
<td>$O \times O$</td>
<td>Spearman’s rank correlation</td>
</tr>
<tr>
<td>$I \times I$</td>
<td>Pearson correlation</td>
</tr>
<tr>
<td>N_x</td>
<td>Cluster analysis (with $x>2$)</td>
</tr>
<tr>
<td>O_x</td>
<td>Multidimensional scaling (with $x>2$)</td>
</tr>
<tr>
<td>I_x</td>
<td>Factor analysis (with $x>2$)</td>
</tr>
</tbody>
</table>
Choosing a significance level

• In general
 – Pilot program and intervention evaluations use liberal significance levels (.2 - .1) to avoid discarding effective interventions.
 – Generally accepted is a significance level of .05
 – Pure research uses conservative significance levels (.01-.001) to avoid wide dissemination of erroneous results.
References

Research Methodology: A Step-By-Step for Beginners.
by Ranjit Kumar (Author)
Paperback: 332 pagina's
Publisher: Sage Publications; 2de Edition; mei 2005
ISBN10 141291194X
ISBN13 9781412911948

by Alan Agresti (Author), Chris Franklin (Author)
Softcover: 848 pages
Publisher: Prentice Hall; 2 edition (2009)
Language: English
ISBN-10: 0-13-135746-8

Test Scores and What They Mean.
by Howard B. Lyman (Author)
Paperback: 190 pages
Publisher: Allyn & Bacon; 6 edition (November 6, 1997)
Language: English
ISBN-10: 0205175392