Discrete Interaction Design
Specification

Prof. Dr. Matthias Rauterberg
Faculty Industrial Design
Technical University of Eindhoven

g.w.m.rauterberg@tue.nl

6-April-2009
Key references/literature:

- **Lifecycle Model:**

- **STD:**

- **PN:**
The Lifecycle Model

- **Requirements**
 - Technical analysis
 - User task analysis
 - Business/market analysis

- **Design**
 - HW/SW design
 - Interaction design
 - Narrative design
 - Object/space design

- **Implementation**
 - Platform prototype
 - Interaction prototype
 - Content prototype
 - Integration

- **Evaluation**
 - Performance evaluation
 - Usability evaluation
 - Aesthetic evaluation

Begin ➔ Concept formulation ➔ End
The Usability Engineering Lifecycle

[Diagram showing the usability engineering lifecycle, including stages like Requirements Analysis, Design/Testing/Development, and Installation, with key activities such as User Profile, Contextual Task Analysis, Platform Capabilities, General Design Principles, User Experience, Detailed UI Design, and testing.]

[source: Mayhew, D. (1999)]
User Interaction Specification

- Many approaches/notations to specifying interaction
 - State-Transition-Diagrams (STD)
 - Petri Nets (PN)

- Aim to provide more detailed descriptions of interaction between user and system
- Refinement of task model in terms closer to system
- Provides medium of discussion and review between human factors designers and systems developers
State Transition Diagram (STD)

Basic Elements

State

= set of values that describe an object (its condition/situation) at a specific moment in time

{State is determined based on the attribute values}

State transition

= relationship indicating a state change

{atomic (i.e. non-interruptible)}
STD Example 1: Draw Circle

Select ‘circle’
Highlight ‘circle’
Circle1
Click on centre
Rubber band
Circle2
Click on circumference
Draw circle
Finish
Start
Menu
Select ‘line’
Highlight ‘line’
Line1
Click on first point
Rubber band
Line2
Double click
Draw last line
Finish

Click on point
Draw line and
rubber band from new point
STD Example 1 (cont’d)

Start
Menu
Circle1
Circle2
Finish

Select ‘circle’
Highlight ‘circle’

Click on centre
Rubber band

Click on circumference
Draw circle

Press escape key

Click on first point
Rubber band

Click on point
Draw line and
rubber band from new point

Arc from each state back to menu
Become messy!
Hierarchical STD Example 2

Not more powerful, but more simple and flexible
Hierarchical STD Example 2 (cont’d)

From Menu → Circle1
- Click on centre
- Rubber band
- Press help button

Circle1 → Circle2
- Press help button
- Help submenu

Circle2 → Finish
- Click on circumference
- Draw circle
- Press help button
- Help submenu
Petri Nets (PN)

• First introduced by Carl Adam Petri in 1962.
• A diagrammatic tool to model concurrency and synchronization in distributed systems.
• Very similar to State Transition Diagrams.
• Used as a visual communication aid to model the system behaviour.
• Based on strong mathematical foundation.
Basic Elements

- PN consists of three types of components: places (circles), transitions (rectangles) and arcs (arrows):
 - **Places** represent possible states of the system;
 - **Transitions** are events or actions which cause the change of state; And
 - **Every arc** simply connects a place with a transition or a transition with a place.
PN: Formal Definition

A Petri net (PN) is a 5 tuple

\[\text{PN} (P, T, \text{IN}, \text{OUT}, M) \]

where:

- \(P = \{p_1, p_2, \ldots, p_n\} \) is a finite set of places,
- \(T = \{t_1, t_2, \ldots, t_n\} \) is a finite set of transitions
- \(\text{IN}: (P \times T) \rightarrow S \)
- \(\text{OUT}: (T \times P) \rightarrow S \)
- \(M: \) Marking vector
PN: Formal Definition (cont’d)

IN are input functions defining directed arcs from places to transitions

OUT are output functions defining directed arcs from transitions to places

S is a set of all nonnegative integers k such that:
- If $k = 1$ a directed arc is drawn without a label
- If $k > 1$ a directed arc is drawn with label k.
- If $k = 0$ no arc is drawn.
PN: Firing Rules for Transitions

- A specific transition t_i is said to be **enabled** if each input place p_i is marked with at least $w(p_i,t_i)$ tokens where $w(p_i,t_i)$ is the weight of the arc from p_i to t_i.

- An enabled transition may or may not fire depending on whether or not the event actually takes place.

- The firing of an enabled transition t_i removes $w(p_i,t_i)$ tokens from each input place p_i of t_i, and adds $w(p_j,t_i)$ tokens to each output place p_j of t_i where $w(p_i,t_i)$ is the weight of the arc from input place p_i to t_i, and $w(p_j,t_i)$ is the weight of the arc from t_i to output place p_j.

(c) M. Rauterberg, TU/e
PN: Change of States (1)

- is denoted by a movement of *token(s)* (black dots) from place(s) to place(s); and is caused by the *firing* of a transition.
- The firing represents an occurrence of the event or an action taken.
- The firing is subject to the input conditions, denoted by token availability.
PN: Change of States (2)

- A transition is *firable* or *enabled* when there are sufficient tokens in its input places.
- After firing, tokens will be transferred from the input places (old state) to the output places, denoting the new state.
- Note that the examples are Petri nets representation of a finite state machine (FSM). PNs are much more powerful to model systems beyond FSMs.
PN: basic modeling (1)

(a) Sequential execution

(b) Conflict

(c) M. Rauterberg, TU/e
PN: basic modeling (2)

(d) Synchronisation

(e) Merging
PN: basic modeling (3)

(f) Confusion

(g) Priorites
PN Example: Font Selection

User presses *bold*

Bold on

User presses *italic*

Italic on

User presses *bold*

Bold off

User presses *italic*

Italic off
PN Example: a finite-state machine (1)

Consider a vending machine
- It accepts either nickels or dimes
- Sells 15c or 20c candy bars
- The vending machine can hold up to 20c
- Coin return transitions are omitted

The next slides are the state diagram of this vending machine which is represented by the Petri net.

Any finite-state machine (or its state diagram) can be modeled with a state machine.
PN Example: a finite-state machine (2)

Get 15c candy

Deposit 5c Deposit 10c

Deposit 5c Deposit 10c

Deposit 10c Deposit 10c

Get 20c candy