Reality Distortion in Communication

Matthias Rauterberg
Department of Industrial Design
Eindhoven University of Technology
2007

1

Ten years after and still based on the presentation of Mark Weiser!

Software Engineering for People

Mark Weiser Chief Technologist Xerox PARC

1997

[I replaced 'engineer' with 'scientist', 'marketeer' with 'designer', 'engineering' with 'technology', and 'software engineering' with 'design science'; the rest remains mainly the same from Mark's original presentation!]

Most important thing Mark Weiser learned as an entrepreneur

• ...

- Problems with reaching agreement
- ...

3

Problem with Agreement: Reality Distortion

- Why is it that designers and scientists rarely understand each other?
- Answer: they have different cultures for communicating importance.
 - Scientists and Designers have anathematic distortion fields.

Reality Distortion varies

- Let 1.0 stand for a perfect match of reality to words
 - "The house appears white on this side."

5

Reality Distortion varies

- Scientists/engineers speak at 0.5-0.8
 - generally understated
 - more understated if more important
 - "The house was probably white."
 - "We wish to suggest a software architecture for the living room in the context of ambient intelligence."

Reality Distortion varies

- Designers speak at 1.5-2.0
 - more if more important
 - "The house is dazzlingly white inside and out."
 - "Outstanding product and service quality"

7

Reality Distortion creates a listening

- Designer speaks at 1.2-2, and discounts everything heard by 0.8-0.5
- Scientist speaks at 0.5-0.8, and boosts everything heard by 1.2-2.0
- Can you see the problem?

Reality Distortion what are these two people thinking?

It may be ok.

It is a perfect design.

9

Reality Distortion

Scientist says: This is a pretty good piece of technology.

Designer hears: ???

Reality Distortion

Scientist says: This is a pretty good piece of technology.

Designer hears: This guy has no confidence, and his technology is pretty bad.

11

Reality Distortion

Scientist hears: ???

Designer says: This is really really important!

Reality Distortion

Scientist hears: Either he's discovered cold fusion, or he's lying.

Designer says: This is really really important!

13

Reality Distortion:

the same thought can lead to different words

Reality Distortion

Let S_S = speaking of scientist, about 0.7 Let L_S = listening of scientist, about 1.4 Let S_D = speaking of designer, about 2.0 Let L_D = listening of designer, about 0.5 Then $L_S(S_S(x)) = x$, and $L_D(S_D(x)) = x$ But $L_D(S_S(x)) = 0.3x$, and $L_S(S_D(x)) = 2.8x$

15

What to do about Reality Distortion?

- Do you want to be understood?
 - speak into the culture of your listener
 - notice how you are heard
- Do you want to be understand?
 - apply the appropriate distortion field
 - ask questions to tune your distortion ratio
- Don't ever expect 1.0

Problems of agreement in Design Science (DS)

- There are many kinds of reality distortion
 - seeming to agree but not really understanding
- What do we agree about in DS?
 - What are the foundations of our work?
 - Questioning their truth is almost unheard of.
 - We almost all are familiar with and use them.
 - What should all practitioners know?
 - Beyond technical skill in particular languages and systems

On What Do We Agree: Some of Mark's Answers

- High level design languages, if appropriate, improve all aspects of a project except possibly running time.
- Dividing systems into modules improves implementation time and maintainability
- Documentation helps
- Adding people to a late project makes it later

Forces against agreement

- · Benefits to disagreeing
- · Absence of pressure for agreement
- · Benefits, when present, come slowly

19

How can we understand DS better? (in industry and academia)

- · More reflective practitioners
- More social science attention to technology and engineering processes

Skill is not enough

- Knowledge of technology are crucial enablers ...
- But not always necessary nor sufficient
 - not necessary for many utilitarian and policy understandings
 - not sufficient for productive engineering
- Other community skills are required
 - students implicitly learn values, language, and culture whether we like it or not

Learning is always joining a community

- Learning is not poured from faculty to student brains
 - especially not without a strong community in place
- All learning is within and about a community
 - Lave and Wenger, 1991

Humanities

- "The goal is of computer science to make [computers] more useful and useable."
 - Rick Weingarten, testifying to Congress, May 1996
- For people
- What are people like? This is the subject of humanities and social sciences
- Example: "The Tacit Dimension"

23

The Tacit Dimension

from philospher Polanyi's book by same name

- Imagine strapping toilet tubes to your eyes and walking around for two hours
 - lots of surprises

The periphery informs and creates the center

- The periphery is the "tacit" dimension to thinking and understanding
- Technology tends to deliver information to the center, and strips off the periphery
 - causing flame-wars in email...
- The tacit is easy to forget...but without it nothing gets done

25

The Flow State and the Tacit Dimension

- If you work uninterruptedly on a sufficiently interesting problem:
 - you forget where you are
 - time passes quickly
 - your unconscious (tacit) mind rallies to make you smart

Academics are members of a foreign community

- They have not coded much, nor as a team
- They don't deeply know aesthetics or design
- Humanities (or customers) are not their life
- They hang out a lot with computer scientists and grad students

27

Curriculum

- History of Technological Change Electrifying America; Natural Monopoly and Universal Service; History of Technology Failures
- History of the Modern Age
 Cosmopolis; A Social History of Truth; The Pencil
- Common Sense

The Tacit Dimension; The Psychology of Everyday Things; Elements of Style; Computer Projects That Failed; Mythical Man-Month

Agree to Agree

- Teach your graduate students, and your employees, to measure, and reflect, on themselves and others.
- Come to agreement on ethics, people, and tools
 - Tentative agreement is more important than being right!
 - When you know more, then disagree.