ViewBricks: A Participatory System to Increase Social Connectedness for the Elderly in Care Homes

Xu Lin, Kai Kang, Cun Li, Jun Hu, Bart Hengeveld, Matthias Rauterberg, and Caroline Hummels
Eindhoven University of Technology, Eindhoven, Netherland

Abstract. Driven by the maturing of Internet and the development of the Internet of Things, people are becoming connected not only via the smart personal devices, but also via the increasingly responsive and connected environments, which brings up new opportunities to involve potential user group like elderly people into this network through tangible interaction and embedded systems. This paper presents the design and implementation of a participatory view-sharing system which consists of a group of specially designed camera kits and a gallery-like interactive installation, aiming to increase the social connection between elderly people living in a care home and the local communities around. The camera kits are designed to provide openness for local people to share sceneries via public participation, while the interactive installation presents the continuous real-time changes of the shared outside views, and triggers further communication between sharers and receivers through a “postcard-sending” metaphor. In this study, we mainly explore the possibilities of connecting people and facilitating social interaction through the combination of online and offline sharing behaviour, as well as the application of IoT technology.

Keywords. Elderly, Social Connectedness, Social Interaction, Responsive Environments

1. Introduction

Ageing has become a global topic with critical challenges for modern society. In Europe, by 2025 more than 20% of Europeans will be 65 or over, with a particularly rapid increase in numbers of over-80s [1]. Currently, most attention of design and technological solutions for this growing population is paid to physical health, mobility and safety. In the field of social wellbeing and mental health, which are also important in ageing process, there is however much space to explore [2, 3].

In recent years, the maturing of Internet and the rapid development of the Internet of Things (IoT) drive people to be increasingly connected with each other through the smart personal devices, as well as through networked environments. Our social life and behaviour in the cyber world is gradually merged into the physical world [4, 5], which brings up new possibilities to involve potential user groups, like the elderly, into this public network and social life, through tangible interaction and embedded technologies in real-life environment.

In this paper, we mainly present the research project ViewBricks, which is deployed to explore how we can adopt IoT-related technologies to enhance the social
connection between the elderly in care institutions and the surrounding local communities. We firstly introduce the specific background of this context and the related work. Then, we describe our current research exploration and illustrate the design and implementation of our project in detail. The insights and future work are discussed in the final part of this paper.

2. Background and Related Works

2.1. Social connectedness of elderly

Elderly people, especially the ones living in care institutions, usually experience a reduction in their social circles and a decline in their engagement with local activities. Increasing online and offline thresholds to get connected put them at the risk of becoming socially isolated [6, 7]. This is one of the important reasons why current care institutions make great efforts in social services and activities.

Online thresholds to be socially connected are mainly due to the high learning load of modern technology [7]. Media and Internet based tools usually update and change very fast, and have little in common with the traditional products in terms of interaction and product semantics. It takes the elderly much more time than the younger generations to learn and remember how to use them, which can result in anxiety for not doing well. There is a need to find a suitable access to build the connection and transition between modern and traditional technologies, so as to involve elderly people into modern social life more mildly.

Offline thresholds usually follow the decline of physical condition and the transition in social life along with the ageing process. Sensory decline, like reduced vision and audition, and decline in mobility physically limit the elderly’s action radius, keeping them indoors. This reduces their opportunities to meet people and join social activities. When moving into a care home, some elderly people leave the places where they have lived and worked for decades, and live far from their families and original social circles. The unfamiliarity of the new environment can result into the growth of social barrier [7].

Current solutions to increase elderly’s social connectedness mainly focus on two directions: (1) enhancing the social tie between elderly and their families through games and smart home products, like the multi-player sports games [2, 8] and the digital photo sharing system [9]; (2) providing social interventions to encourage the elderly to share experiences and meet new friends, such as social activities, internet training, home visiting [6, 10]. The first direction focuses more on strengthening the social ties within limited family members, but does not consider much about the potential of enriching the elderly’s social resources, like improving the connection with people in the neighbourhood. The second direction helps in building more social relationships, but requires heavy investments in organizing, managing and maintaining the activities and services, which makes it hard to be sustainable.

Given the above analysis, there is a chance to explore how design intervention with the application of modern technology can help in improving or extending the elderly’s social connections with other people in their local community through a participatory and more sustainable way.
2.2. Interactive environment and connected “Things”

To lower the threshold of engaging elderly people into the interaction and digital service, tangible solutions and sensing technology are widely adopted in current design for smart products and environments. The interaction and embedded systems in living environments usually fit people’s life style with intuitive operations, learning people’s behaviour and giving feedback in situ [11]. There are examples like using the interactive wall embedded in living environment to help reducing wandering behaviour of dementia elderly through motion sensing and media feedback, and using the lighting and sound installation to improve experience in care home’s public space via sensory simulation [12, 13]. Furthermore, in public contexts like indoor common spaces or the streets outdoor, tangible interventions not only help engage people with the interaction, but also contribute to facilitating social interactions between participants [14, 15]. This may also help in increasing social connections between elderly people and other participants.

Meanwhile, Technological advances, like the growing open-source hardware platforms in IoT development, lower the threshold for the public participation in real-life data sensing and sharing. The smart “Things” are becoming more connected with simplified building process and enriched data collecting and sharing approaches [4, 5]. This also provides possibilities to enrich the things that can be shared between elderly and local communities, as well as the ways to share them.

3. Design of ViewBricks System

In care homes, many of the elderly people hold strong emotion and rich memories towards specific places, including the places with unforgettable personal experience and the ones where big events or issues happened. However, the online and offline thresholds hinder them from revisiting the places or keeping updated with the happenings in those areas via social media or photo searching.

This actually leaves space for design researchers to explore whether it is possible to help filling up this gap by creating a view-sharing experience of those places between elderly people and the local communities, which can finally contribute to the improvement of the social connection between them.

Thus, in this study, an initial participatory system is designed, called ViewBricks (Fig. 1). It consists of a group of specially designed camera kits (ViewBricks) for local people to openly share constant real-time videos and images from different places, as well as a gallery-like interactive installation to present the shared contents in the care home and trigger further communication between sharers and receivers through a “postcard-sending” metaphor. The system is implemented mainly to explore the possibilities of connecting people and facilitating social interaction through the combination of online and offline sharing behaviour, as well as applying related IoT technology into everyday life.
3.1. ViewBricks for view sharing

The view-sharing kits (the ViewBricks) are wireless networking image collectors, which can automatically take pictures or record videos at regular intervals and upload the captured contents to the online server via 3G network simultaneously (Fig. 2). They are portable and can work independently in outdoor environment.

Volunteers from local communities are assigned with the viewbricks and encouraged to put them wherever they wish to share a view with the elderly who live in a care home and cannot have long-distance or long-time outdoor activities every day. As the viewbricks require low learning cost to share sceneries, all that volunteers need to do is to put them on some stable surfaces, let them face the views they want to share, and turn the kits on. Then, the viewbricks will take and upload the photos at a speed of 1 photo per minute via 3G network. In this version, we use Flickr as the Internet server for storing photos. Each volunteer will receive an account to check the real-time uploaded pictures and the working condition of the viewbricks.

![Figure 1. Structure of ViewBricks System.](image1)

![Figure 2. Structure of ViewBricks.](image2)

![Figure 3. Structure of the installation (1 unit).](image3)
3.2. The Interactive gallery to build connection

The second part of the ViewBricks system is the Gallery-like interactive installation (Fig. 3). It is designed in a tangible interface and vintage style to suit elderly people’s perception and preference, which can also fit into the surroundings of the care home. The sceneries in the frames, however, are digital images shared from the viewbricks in real time. The installation has three photo frames hanging on its wall, and each frame has a button and a slot right under it. When the button is pushed, the view shown on the screen will be printed out as a postcard out of the slot.

We choose the corridor of the ground floor in a care home as the location for the installation, which is a common space open to all the residents and the neighbourhood around. Many of the elderly in care home walk along the corridor to the dining hall for meals or public activities. When they pass the corridor and get close to one of the photo frames, the system will detect their location and behavior, then the still picture starts to be dynamic and runs a 30-second slideshow like a time-lapse animation. The elderly can see the delicate changes of the views as time passed in the last several hours. When the slideshow is over, the photo frame stops at the latest image and continues the updating at the speed of 1 image per minute (Fig. 4). If the elderly are attracted by this and enjoy what is happening somewhere outside at the moment, they are encouraged to push the button, and the scenery shown on the screen will start to “fall down”. Then the elderly can receive a real postcard from the slot with a picture exactly same as shown in the photo frame. On the backside, there is the address and messages from the volunteer who shares the view. The elderly can choose to keep the postcard or write it back to continue the conversation (Fig. 5).

![Figure 4. Interaction of time-lapse slideshow.](image)

![Figure 5. Interaction of printing the postcards.](image)
This postcard with greetings becomes a media to build up the connection between the elderly inside the care home and the volunteers outside through a conversion transited from cyber to physical world. Besides, when the button is pushed down, there will also be a comment made online right under the photo in the sharer’s Flickr album, saying that the elderly like the view and print it into a postcard. The more the elderly push the button and print, the more popular the view will be (Fig. 6).

In this design, we tend to explore the possibilities of providing new view-sharing experience to help increase the elderly’s social connectedness. With the ViewBricks, what local people can share with the elderly are not only the past moments in shared places, but also the chances of knowing what is happening and what will happen, which actually help create shared experiences between sharers and the elderly for potential communication in future. The “postcard-sending” metaphor in this design works for translating the interaction in digital language into physical ones for the elderly, and provides physical evidence to trigger social interaction between the elderly and other people.

Figure 6. Framework of ViewBricks system.

4. Implementation of ViewBricks System

4.1. Structure and Technical solution for ViewBricks

In this project, the ViewBricks mainly work for data collecting. In order to be stable, power saving and not distracting in the located environment, the kits are designed with a look like the common bricks made of cement in Netherland cities. They are humble, strong, and sealed with waterproof material inside to against the heavy rain, strong wind, pressure, collision and being stolen (Fig. 2).
Inside the ViewBricks, we use Raspberry Pi (Model B+) as the core component to control the camera module and connect to the Internet, which has relatively lower power consumption with satisfying performance and is convenient for development and test in the R &D phase.

The wide-angle (160 degree) camera module is applied in this project for a good view of outdoor scenery. It has a five-megapixel fixed-focus camera that supports 1080p30, 720p60 and VGA90 video modes, as well as the still capturing, which can provide pictures with a relatively good quality on 19” screens. It can be accessed though MMAL and V-4L APIs [16]. The third-party library (Picamera Python library) is used for camera control in this system.

There is no official 3G module for Raspberry Pi yet, thus we choose 3G USB dongles for 3G connection. The model used in this system is Huawei E1750, which has been tested working fine with Raspberry Pi after setting up.

A Powerbank battery (output 5V-1A) is our current power solution to support ViewBricks. Given the limited surface area of ViewBricks, the conversion rate of most current solar panels on market and the lack of sunshine in the Netherlands, we are struggling with the solution to use solar battery and still trying to find a better power supply for ViewBricks.

The key program of ViewBricks is to capture images and upload them to the online social media server via API—Flickr API in this case. A shell script is also created to establish 3G connection and then call this program at regular intervals. The safe work time for each ViewBricks is tested and recorded, and an email or SMS will be sent by the system to users as a reminder when it is time to change battery, in order to avoid the power off without shutdown, which may damage the device.

4.2. Construction of the installation inside a care home

In order to fit the vintage style of the environment and engage the elderly in a natural and mild way, we hide everything that looks digital or technological behind a new wall built specially for the installation (Fig. 3). Raspberry Pi is also used to implement the main function of the installation for its advantage in size. We choose Raspberry Pi 2 (Model B) this time for the need of more complicated computing work and less limitation in power consumption. Wi-Fi Module (EDUP EP-N8508GS) is used for the Internet connection. Ultrasonic ranging module (HC-SR04) is adopted to detect the distance of the object passing by, connected to the Raspberry Pi via the General-purpose input/output (GPIO). It provides 2cm to 400cm non-contact measurement function with the accuracy of 3mm. There are also two buttons connected via GPIO, one is for the developers to exit the system and the other one is the button for the users to print the postcard. The printer, Cannon SELPHY CP-910 is adopted for printing postcards and photos, which is in a size small enough to be hidden behind the wall and can print cards in a relative high speed and good quality.

5. Discussion and Future Work

In this paper we present a participatory view-sharing system, ViewBricks, which consists of a group of photo-capturing kits and a gallery-like interactive installation. The goal of this system is to explore an inter-disciplinary approach to involve potential group, the elderly, into the view-sharing experience responsive and connected
environment based on the “Internet of Things”. The system provides services for the elderly who live in care home by enhancing their connection and social support from outside.

Through the design and implementation process, we initially highlight some important factors to help improve social connectedness via this system, based on the initial feedback from the caring home faculties, and plan to explore them through the improvement of content selecting, interaction and sustainability of this system.

5.1. Important factors of the system

The first factor is the **constant real-time view sharing**. It directly presents what is happening outside at the moment that they are watching, which contributes to facilitate the connection between remote places via the synchronism of real-world changes. Furthermore, instead of showing past moments that other people have experienced, the real-time views provide shared experiences between sharers and receivers to see what will happen in shared places together, which have potentials to facilitate further communication.

The second factor is the **interactivity** of the system, which mainly contributes in two important aspects: (1) enhancing the connection between elderly and the outside; (2) providing the transition between digital language and the physical one. Printing postcards provides the elderly a sense of creating influences and getting feedbacks from the other side of the frames, which helps enhance the connection through interaction, instead of only showing the images. The printing operation also represents the fact that elderly people like the specific shared sceneries. It translates the elderly’s offline appreciation into similar online behaviour, such as “like” and “favorite”. The further operations like showing the postcards or sending them to other people can be considered as transformed “forward”. The greetings printed on postcards stand for online postings from sharers, and the replies through postcard sending from the elderly will be offline “commenting”.

The third factor is the potential to trigger **social interaction** between participants. Besides the aim of providing tangible interaction, the postcard-sending metaphor also emphasizes the fact that the sceneries are something that local people wish to share and talk about with the elderly, rather than some randomly chosen views with little meaning. The inviting sentences in printed greetings also leave opportunities to trigger further communication via writing replies. Meanwhile, the choice of embedding the interactive installation into the common space is also based on the purpose of creating more opportunities for the elderly to encounter with each other and start co-located conversations, which helps to motivate senior residents to pay attention to the system and also contributes in increasing social connectedness.

The fourth factor is the **public participation**. Improving social connectedness needs a long-term intervention, which means the system will require constant updates in content or interaction to attract users. The spreading and maintaining of the camera kits, the location changing, and the communicating via postcards can hardly be carried out only through service providing from the care institutions in a top-down mode. The public participation of local communities is necessary for the sustainability of the system, technically and socially, and a suitable mechanism to support the participation also needs to be explored.
5.2. Future work

For choosing locations, we start with encouraging people to share typical places in city that can be recognized by most of people, while the places having strong emotional connections with the elderly should also be added. Recommendations from participants for place choosing can be found out in interviews after the experiment. At the same time, emotional impacts brought by the sceneries are need to be considered as well, since the depressed sceneries that can call up bad memories should be carefully dealt with.

The interaction of the installation currently focuses on receiver side, and mainly happens indoor. In further development, the interaction on sharer side and outdoor needs to be considered, which includes the interaction between indoor installation and outdoor kits, the direct social interaction between sharers and receivers, and the possible interaction in shared places that can attract outside people to join the system.

Finally, solutions to maintain the sustainability of the whole system will be explored in further development. For projects based on public participation, a suitable mechanism to provide proper tasks and awards is necessary to keep people engaged with the system. Shared needs and interests also need to be explored, in order to motivate different groups of participants to join the communication and social interaction.

6. Conclusion

ViewBricks system presented in this paper is a design practice, based on the research goal of exploring possibilities to increase social connectedness of the elderly living in care homes, through the combination of online and offline sharing behaviour, as well as the adoption of IoT-related technologies. The system consists of a gallery-like interactive installation and a group of view-sharing kits. The elderly’s connection with the shared places and social interaction with the sharers can be facilitated through the “postcard-sending” interaction. The important factors found in design and implementation will be improved in future iteration, in order to refine the interaction, enhance the connected relationship, and sustain the engaging experience and user participation.

In current stage, we design this system to find out the factors that can affect users’ social behaviour that happens not only inside the care home but also in the interaction outside. The whole system is kept flexible and able to be modified for different study purpose in related areas.

References

Ambient Intelligence and Smart Environments

The Ambient Intelligence and Smart Environments (AISE) book series presents the latest research results in the theory and practice, analysis and design, implementation, application and experience of Ambient Intelligence (AmI) and Smart Environments (SmE).

Coordinating Series Editor:
Juan Carlos Augusto

Series Editors:
Emile Aarts, Hamid Aghajan, Michael Berger, Vic Callaghan, Diane Cook, Sajal Das, Anind Dey, Sylvain Giroux, Pertti Huuskonen, Jadwiga Indulska, Achilles Kameas, Peter Mikulecký, Daniel Shapiro, Toshiyo Tamura, Michael Weber

Volume 21

Recently published in this series

Vol. 20. W. Chen et al. (Eds.), Recent Advances in Ambient Assisted Living – Bridging Assistive Technologies, e-Health and Personalized Health Care
Vol. 18. J.C. Augusto and T. Zhang (Eds.), Workshop Proceedings of the 10th International Conference on Intelligent Environments
Vol. 17. J.A. Botía and D. Chariotes (Eds.), Workshop Proceedings of the 9th International Conference on Intelligent Environments
Vol. 16. M. d’Angelantonio and J. Oates (Eds.), Is Ambient Assisted Living the Panacea for Ageing Population?
Vol. 15. J. Mintz et al. (Eds.), Touching the Future Technology for Autism? – Lessons from the HANDS Project
Vol. 13. J.A. Botía et al. (Eds.), Workshop Proceedings of the 8th International Conference on Intelligent Environments
Vol. 12. T. Bosse (Ed.), Agents and Ambient Intelligence – Achievements and Challenges in the Intersection of Agent Technology and Ambient Intelligence
Vol. 11. J.C. Augusto et al. (Eds.), Handbook of Ambient Assisted Living – Technology for Healthcare, Rehabilitation and Well-being
Vol. 10. J.C. Augusto et al. (Eds.), Workshop Proceedings of the 7th International Conference on Intelligent Environments

ISSN 1875-4163 (print)
ISSN 1875-4171 (online)
Intelligent Environments 2016
Workshop Proceedings of the 12th International Conference on Intelligent Environments

Edited by
Paulo Novais
Universidade do Minho, Portugal
and
Shin’ichi Konomi
University of Tokyo, Japan

IOS Press
Amsterdam • Berlin • Washington, DC
Introduction to the Proceedings of the Workshops of IE’16

London, United Kingdom
12–13 September 2016

Intelligent Environments (IEs) refer to physical spaces in which IT and other pervasive computing technologies are woven and used to achieve specific goals for the user, the environment, or both. IEs have the ultimate objectives of enriching user experience, improving the management of that environment and increasing user awareness.

Research in IEs is driven by inventive, innovative and fast-paced ideas, and, as such, there is a sense of urgency in materializing them, assessing their practical implications, and verifying whether they deliver their promised results. The mantra for research in this area is well conveyed by a thought brought to us by Steve Jobs: “Let’s go invent tomorrow instead of worrying about what happened yesterday”. Workshops, as brief gatherings towards the establishment of collaborations and incitement of creativity, are the ideal venue for creating and sharing this “tomorrow”.

The 12th International Conference on Intelligent Environments focuses on the development of advanced intelligent environments, as well as newly emerging and rapidly evolving topics. In the present edition, we are pleased to include in this volume the proceedings of the following workshops and symposia that emphasize multidisciplinary and transversal aspects of IEs, as well as cutting-edge topics:

- 5th International Workshop on Smart Offices and Other Workplaces (SOOW’16);
- 5th International Workshop on the Reliability of Intelligent Environments (WoRIE’16);
- 1st International Workshop on Legal Issues in Intelligent Environments (LIEE’2016);
- 2nd International Symposium on Future Intelligent Educational Environments and Learning (SOFIEE’16);
- 2nd International Workshop on Future Internet and Smart Networks (FI&SN’2016);
- International Workshop on Intelligent Environments Supporting Healthcare and Well-Being (WISHWeL’2016);
- International Workshop on Computation Sustainability, Technologies and Applications (CoSTA’2016);
- Creative Science 2016 (CS’16) and Cloud-of-Things 2016 (CoT’16);
- Workshop on Wireless Body Area Networks for Personal Monitoring in Intelligent Environments (WBAN-PMIE);
- Physical Computing Workshop.
As is visible from the list, the workshops and symposia organized in conjunction with the main conference provide a forum for researchers, scientists and engineers to engage in many interesting and active discussions that will encourage further research in these key areas of Intelligent Environments.

The proceedings contain a series of contributions reflecting the latest research developed in IEs and related areas, focused on stretching the borders of the current state of the art and contributing to an ever increasing establishment of IEs in the real world.

It is our aim to inspire readers in their own work, in the hope that reading these proceedings plants the seeds for new, interesting, and original ideas.

We would like to thank all the contributing authors, as well as the members of the Organizing Committees and Program Committees of the workshops and symposia for their highly valuable work, which contributed to the success of the Intelligent Environments 2016 event. We are also grateful to the conference organizers and local staff who worked for the success of this event.

Thank you for your help, this event would not exist without your contribution.

As a final note, the Workshops Chairs would like to take the opportunity to thank Professor Juan Carlos Augusto and the other members of the IE’2016 organization for the trust they placed on us.

We are looking forward to seeing you all in London and actively participating in these exciting workshops.

September 2016
Paulo Novais, Universidade do Minho, Portugal
Shin’ichi Konomi, University of Tokyo, Japan
Workshops Chairs of IE’16
Committees

Workshops Chairs
Paulo Novais, Universidade do Minho, Portugal
Shin’ichi Konomi, University of Tokyo, Japan

Tutorials Chair
Gordon Hunter, Kingston University, London, UK

5th International Workshop on Smart Offices and Other Workplaces (SOOW’16)

Organising Committee
Pavel Čech, University of Hradec Králové, Hradec Králové, Czech Republic
Goreti Marreiros, GECAD, Polytechnic of Porto, Porto, Portugal
Peter Mikulecký, University of Hradec Králové, Hradec Králové, Czech Republic

Supporting Organizers
Kateřina Mišičková, University of Hradec Králové, Hradec Králové, Czech Republic
Karel Mls, University of Hradec Králové, Hradec Králové, Czech Republic

Programme Committee
Ana Almeida, ISEP, Polytechnic of Porto, Porto, Portugal
João Carneiro, GECAD, Polytechnic of Porto, Porto, Portugal
Martina Husáková, University of Hradec Králové, Hradec Králové, Czech Republic
Hoon Ko, GECAD, Polytechnic of Porto, Porto, Portugal
Constantino Martins, ISEP, Polytechnic of Porto, Porto, Portugal
Petr Tučník, University of Hradec Králové, Hradec Králové, Czech Republic
Ivan Vrana, Czech University of Life Sciences, Prague, Czech Republic

5th International Workshop on the Reliability of Intelligent Environments (WoRIE’16)

Organising Committee
Miguel J. Hornos, University of Granada, Granada, Spain
Juan C. Augusto, Middlesex University, London, United Kingdom

Programme Committee
Juan A. Álvarez-García, Universidad de Sevilla, Spain
Wolfgang Apolinarski, Locoslab GmbH, Germany
Serge Autexier, University of Bremen, Germany
Sebastian Bader, University of Rostock, Germany
Stefano Chessa, Università di Pisa, Italy
Eun-Sun Cho, Chungnam National University, Korea
Fulvio Corno, Politecnico di Torino, Italy
Antonio Coronato, Institute for High Performance Computing and Networking, Italy
Domenico Cotroneo, Università “Federico II” di Napoli, Italy
Vincenzo De Florio, University of Antwerpen, Belgium
Carl Evans, Middlesex University, United Kingdom
Lori Flynn, CERT, USA
Gordon J. Hunter, Kingston University, United Kingdom
Fahim Kawsar, Bell Laboratories, Belgium
Thibaut Le Guilly, Aalborg University, Denmark
Yan Liu, Advanced Digital Science Center, University of Illinois, Singapore
Pedro Merino, University of Málaga, Spain
Florian Michahelles, Siemens Corporation, USA
Daniela Micucci, Università degli Studi di Milano-Bicocca, Italy
Alice Miller, University of Glasgow, United Kingdom
George C. Polyzos, AUEB, Greece
Davy Preuveneers, KU Leuven, Belgium
Carlos Rodríguez-Dominguez, University of Granada, Spain
Tomás Ruiz-López, Everyware Technologies, Spain
Robert C. Seacord, NCC Group, USA
Alexei Sharpskykh, Vrije U. Amsterdam, Netherlands
Sotirios Terzis, University of Strathclyde, United Kingdom
Yoshito Tobe, Aoyama Gakuin University, Japan

1st International Workshop on Legal Issues in Intelligent Environments (LIIE’2016)

Organizing Committee
Pedro Miguel Freitas, Law School of the University of Minho, Portugal
Massimo Durante, University of Torino, Italy

Program Committee
Giovanni Sartor, University of Bologna, Italy
Pompeu Casanovas, Universitat Autònoma de Barcelona, Spain, and Royal Melbourne Institute of Technology, Australia
Radboud Winkels, University of Amsterdam, Netherlands
Ugo Pagallo, University of Torino, Italy
Francisco Andrade, University of Minho, Portugal
Teresa Moreira, University of Minho, Portugal
Paulo Novais, University of Minho, Portugal
Clovis Demarchi, University of Vale do Itajaí, Brazil
Cristiana Santos, University of Bologna, Italy
Davide Carneiro, University of Minho, Portugal
Javier Bajo, Universidad Politécnica de Madrid, Spain
Ehrwein Nihan Céline, Haute Ecole d’Ingénierie et de Gestion du Canton de Vaud, Switzerland
Carlisle E. George, Middlesex University, UK
Vicente Julián, Valencia University of Technology, Spain
2nd Int'l Symposium on Future Intelligent Educational Environments and Learning (SOFIEE'16)

Organizing Committee
Minjuan Wang, San Diego State University, USA
Vie Callaghan, University of Essex, UK
Juan C. Augusto, Middlesex University, UK

Program Committee
Jörg Cassens, University of Hildesheim, Germany
Jia Chen, Shanghai International Studies University, China
George Dafoulas, Middlesex University, UK
James Frazee, San Diego State University, USA
Pirkko Harvey, Middlesex University, UK
Gordon Hunter, Kingston University, UK
Juan Ortega, University of Seville, Spain
Hua-ni Liu, Shanghai International Studies University, China
Anasol Pena, University of Essex, UK
Demetrios Sampson, University of Piraeus, Greece
Liping Shen, Shanghai Jiaotong University, China
Shengquan Yu, Beijing Normal University, China
Thrasyvoulos Tsiatsos, Aristotle University of Thessaloniki, Greece
Hsuan-Yi Wu, National Taiwan University
Henry Chan, HongKong Polytechnic University, Hong Kong
Thomas Reeves, University of Georgia, USA

2nd International Workshop on Future Internet and Smart Networks (FI&SN’2016)

Organizing Committee
Alexandre Santos, Centro ALGORITMI, University of Minho, Portugal
António Costa, Centro ALGORITMI, University of Minho, Portugal
Pascal Lorenz, University of Haute Alsace, France

Program Committee
Adriano Moreira, University of Minho, Portugal
Alexandre Santos, University of Minho, Portugal
António Costa, University of Minho, Portugal
Bruno Dias, University of Minho, Portugal
Edmundo Monteiro, University of Coimbra, Portugal
Fatima Bendella, University of Oran, Algeria
Fernando Boavida, University of Coimbra, Portugal
George Karetsos, T.E.I of Thessaly, Greece
Halina Tarasiuk, Warsaw University of Technology, Poland
Helena Rodrigues, University of Minho, Portugal
Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
Joaquim Macedo, University of Minho, Portugal
Joel Rodrigues, University of Beira Interior, Portugal
Juan Carlos Burguillo, University of Vigo, Spain
Liane Tarouco, University Federal of Rio Grande Sul, Brazil
Luis Sabucedo, University of Vigo, Spain
M. João Nicolau, University of Minho, Portugal
Manuel Ricardo, University of Porto, Portugal
Marília Curado, University of Coimbra, Portugal
Mário Freire, University of Beira Interior, Portugal
Miguel Rio, University College London, United Kingdom
Pascal Lorenz, University of Haute Alsace, France
Paulo Carvalho (TBC), University of Minho, Portugal
Pedro Sousa, University of Minho, Portugal
Riri F. Sari, University of Indonesia, Indonesia
Rui Aguiar, University of Aveiro, Portugal
Sofiane Hamrioui, University Mouloud Mameri, Algeria
Solange R. Lima, University of Minho, Portugal
Susana Sargento, University of Aveiro, Portugal
Teresa Vazão, University of Lisbon, Portugal
Xuejie Liu, Jilin University, China

International Workshop on Intelligent Environments Supporting Healthcare and Well-Being (WISHWell'2016)

Organizing Committee
Wei Chen, Fudan University, China
Juan C. Augusto, Middlesex University, United Kingdom

Program Committee
Fedor Lehocki, Slovak University of Technology in Bratislava, Slovak
Andreas Stainer-Hochgatterer, AIT Austrian Institute of Technology GmbH, Austria
Johannes Kropf, AIT Austrian Institute of Technology, Austria
Fernando Seoane, KTH - School of Technology and Health, Sweden
Ilias Maglogiannis, University of Piraeus, Greece
Paolo Barsocchi, CNR-ISTI, Italy
Mario Kolberg, University of Stirling, UK
Holger Storf, IMBEI, Germany
Lenka Lhotska, Czech Technical University in Prague, Czech
Wolfgang Deiters, Fraunhofer Institute for Software and Systems Engineering, Germany
Dean Kramer, Middlesex University, UK
Paul Panek, Vienna Univ. of Technology, Austria
Stefano Chessa, Department of Computer Science, University of Pisa, Italy
Daniel Rodriguez Martin, UPC – CETpD, Spain
Babak A. Farshchian, SINTEF ICT, Norway
Sten Hanke, Austrian Institute of Technology, Austria
Juan Antonio Alvarez-Garcia, University of Seville, Spain
Klaus-Hendrik Wolf, Peter L. Reichertz Institut for Medical Informatics, University of Braunschweig, Institute of Technology and Hannover Medical School, Germany
International Workshop on Computation Sustainability, Technologies and Applications (CoSTA’2016)

Organizing Committee
Fábio Silva, University of Minho
Shin’ichi Konomi, University of Tokyo
Rui A. Costa, Ubiwhere
Paulo Novais, University of Minho
Cesar Analide, University of Minho

Programme Committee
Ángelo Costa, University of Minho, Portugal
António Costa, University of Minho, Portugal
Antonio Fernández Caballero, Universidad de Castilla-La Mancha, Spain
Davide Carneiro, University of Minho, Portugal
Ester Martínez, Jaume-I University, Spain
Ichiro Satoh, National Institute of Informatics Tokyo, Japan
Jan Treur, University Amsterdam, Netherlands
Javier Bajo, Universidad Politécnica de Madrid, Spain
Joel Rodrigues, University of Beira Interior, Portugal
José Carlos Castillo, University Carlos III of Madrid, Spain
Marco Gomes, University of Minho, Portugal
Ricardo Costa, Polytechnic of Porto, Portugal
Tiago Oliveira, University of Minho, Portugal
Tomoyo Sasao, University of Tokyo, Japan
Veikko Ikonen, VTT Technical Research Centre, Finland
Vic Callahan, University of Essex, UK

Creative Science 2016 (CS’16) and Cloud-of-Things 2016 (CoT’16)

Organizing Committee
Vic Callaghan, University of Essex, UK
Chantel Dan Chen, University of Essex, UK
Jeannette Chin, Anglia Ruskin University, UK
Jennifer O’Connor, National University of Ireland, Ireland
Marc Davies, British Aerospace, UK
Simon Egerton, University of Monash, Malaysia
Gary Graham, Leeds University, UK
Jim Hensman, Coventry University, UK
Brian David Johnson, Arizona State University, USA
Yevgeniya Kovalchuk, Kings College London, UK
Paul McCullagh, University of Ulster, UK
Anasol Peña-Rios, University of Essex, UK
Dr Alin Tisan, Anglia Ruskin University, UK
Hongmei Wang, Academy of Classical Learning, China
Hsuan-Yi Wu, National Taiwan University, Taiwan
Víctor Zamudio, Instituto Tecnológico de León, México
Shumei Zhang, Shijiazhuang University, China
Ping Zheng, Canterbury Christ Church University Business School, UK

Workshop on Wireless Body Area Networks for Personal Monitoring in Intelligent Environments (WBAN-PMIE)

Organizing Committee
Daniel T. H. Lai, Victoria University, Australia
Rezaul Begg, Victoria University, Australia

Program Committee
Francois Rivet, University of Bordeaux, France
Yann Deval, University of Bordeaux, France
Mehmet Yuce, Monash University, Australia
Paul Grimshaw, The University of Adelaide, Australia
David Thiel, Griffith University, Australia
Daniel James, Griffith University, Australia
Wenlong Cheng, Monash University, Australia
Palaniswami M, The University of Melbourne, Australia
Tom Allen, Manchester Metropolitan University, UK
Angelo Sabatini, The BioRobotics Institute, Italy
Ahsan Khandoker, Khalifa University of Science, UAE
Contents

Introduction to the Proceedings of the Workshops of IE’16 v
Paulo Novais and Shin’ichi Konomi

Committees vii

5th International Workshop on Smart Offices and Other Workplaces (SOOW’16) 3

Workshop on Smart Offices and Other Workplaces Peter Mikulecký, Pavel Cech and Goreti Marreiros

Intelligent Reports for Group Decision Support Systems João Carneiro, Luis Conceição, Diogo Martinho, Goreti Marreiros and Paulo Novais

Smart Classroom Study Design for Analysing the Effect of Environmental Conditions on Students’ Comfort 14 Pavel Cech

Simulating Decision Processes in Intelligent Environments 24 Peter Mikulecký and Richard Cimler

Smart Office Automation Based on Semantic Event-Driven Rules Sergio Muñoz, Antonio F. Llamas, Miguel Coronado and Carlos A. Iglesias

A System Architecture for Assistance in Manual Tasks 43 Fabian Quint, Frieder Loch, Marius Orfgen and Detlef Zuehlke

5th International Workshop on the Reliability of Intelligent Environments (WoRIE’16) 55

Introduction to the Proceedings of WoRIE’16 Miguel J. Hornos and Juan C. Augusto

A Formal Model for Event-Condition-Action Rules in Intelligent Environments Claudia Vanuccchi, Diletta Romana Cacciagrano, Flavio Corradini, Rosario Culmone, Leonardo Mostarda, Franco Raimondi and Luca Tesi

From Raw Data to Agent Perceptions for Simulation, Verification, and Monitoring 66 Michele Bottone, Giuseppe Primiero, Franco Raimondi and Neha Rungta
A Framework for the Development of Smart Ubiquitous Real-Time Systems Based on the Internet of Agents and Internet of Services Approaches
Pablo Pico-Valencia and Juan A. Holgado-Terriza

A Risk-Driven Methodology in Developing Ambient Intelligence Healthcare Systems
Giuseppe Cicotti and Antonio Coronato

Trending Technologies and Standards Supporting the Development of Quality Collaborative Web Applications: The Case Study of VIRTRAEL
Carlos Rodríguez-Domínguez, Francisco Carranza-Garcia, Gabriel Guerrero-Contreras and José Luis Garrido

1st International Workshop on Legal Issues in Intelligent Environments (LIIE’2016)

Introduction to the Proceedings of Workshop on Legal Issues in Intelligent Environments
Pedro Miguel Freitas and Massmo Durante

Intelligent Environments: Challenges for Privacy and Data Protection
Carlisle George

Control and Supervision in a Post-Modern Technological Society
Pedro Miguel Freitas, Paulo Novais and Vicente Julián

Personal Data and Surveillance: The Danger of the “Homo Conectus”
Teresa Coelho Moreira and Francisco Pacheco Andrade

Legal Aspects on Smart House Welfare Technology for Older People in Norway
Veralia Gabriela Sánchez and Carlos F. Pfeiffer

2nd Int’l Symposium on Future Intelligent Educational Environments and Learning (SOFIEE’16)

2nd Int’l Symposium on Future Intelligent Educational Environments and Learning
Minjuan Wang, Vic Callaghan and Juan Augusto

Identifying Cultural Learning Preferences: Develop Effective Training for Chinese Learners
Minjuan Wang, Yun Zhang, Wendy Sanyk and Marcus Velasco

Integration of Learning Activity and Process-Oriented Assessment to Promote the Self-Directed e-Learning
Xiaofeng Wang and Shengquan Yu

The Case for Small Data in Higher Education
Berlin Fang and Jennifer Shewmaker

Design Principles for Massive Open Online Courses (MOOCs)
Minjuan Wang and Nancy Owsiany
Improving English as a Foreign Language Education in China with Creative Science
Shumei Zhang, Victor Callaghan and Hongmei Wang

Q3D-Game: A Tool for Training Users’ 3D Spatial Skills
Zoe Falomir and Eric Oliver

ICUPRES: To a Standardized Recommendation and Profiling Services for Learning Management Systems
Alberto Oliva, Alberto Caballero and Andrés Muñoz

Keeping Them Interested and Keeping Them Honest: Using an On-Line Learning and Development Environment Called NoobLab to Improve Outcomes and Prevent Plagiarism in Undergraduate Programming Pedagogy
Paul Neve, Gordon Hunter and David Livingstone

Improving Automatic Speech Recognition for Mobile Learning of Mathematics Through Incremental Parsing
Marina Isaac, Eckhard Pfluegel, Gordon Hunter, James Denholm-Price, Dilaksha Attanayake and Guillaume Coter

A Comparison of Mobile Learning Platforms in Teaching: Marriott’s China Hospitality Education Initiative
Sean Haze, Mary De Lepe and William Olmstead

Creating Smarter Teaching and Training Environments: Innovative Set-Up for Collaborative Hybrid Learning

Harnessing the Potential of Augmented and Virtual Reality for Military Education
Andrew T. Greenwood and Michael P. O’Neil

Supervising and Improving Attentiveness in Human Computer Interaction
Dalila Durães, Davide Carneiro, Javier Bajo and Paulo Novais

Flipping the Automotive Class in a Vocational College
Hüseyin Can Şenel and Abdullah Topçu

2nd International Workshop on Future Internet and Smart Networks (FI&SN’2016)

Introduction to the Proceedings of FI&SN’2016
Alexandre Santos, António Costa and Pascal Lorenz

Policy-Based Management for Smart Mobility
Teresa Vazão, João Duarte Gomes and Ricardo Chaves

Named Data for Mobile AdHoc Networks
Ana Filipa Pereira, Maria João Nicolau, António Costa, Joaquim Macedo and Alexandre Santos
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimizing Load Balancing Routing Mechanisms with Evolutionary Computation</td>
<td>Vítor Pereira, Miguel Rocha and Pedro Sousa</td>
<td>298</td>
</tr>
<tr>
<td>A Survey on Vehicular Communication Technologies</td>
<td>Bruno Ribeiro, Alexandre Santos and Maria João Nicolau</td>
<td>308</td>
</tr>
<tr>
<td>Data Similarity Based Dynamic Node Clustering Using Bio-Inspired Algorithm for Self-Organized Wireless Sensor Networks</td>
<td>Mishahuddin and Riri Fitri Sari</td>
<td>318</td>
</tr>
<tr>
<td>7th International Workshop on Intelligent Environments Supporting Healthcare and Well-Being (WISHWell’2016)</td>
<td>Wei Chen and Juan C. Augusto</td>
<td>331</td>
</tr>
<tr>
<td>3D Tune-In: 3D-Games for TUNing and IEarnINg About Hearing Aids</td>
<td>Lorenzo Picinali, Mirabelle D’Cruz and Luca Simeone on behalf of the 3D Tune-In Project Consortium</td>
<td>332</td>
</tr>
<tr>
<td>Sensing the Music: An Audiovisual Environment for ASD Therapy</td>
<td>Katarina Biljman</td>
<td>338</td>
</tr>
<tr>
<td>Including Affect as a Part of the Context in Assistive Technologies for Cognition</td>
<td>Juan C. Torrado, Javier Gomez and Germán Montoro</td>
<td>358</td>
</tr>
<tr>
<td>RFID-Based Object Localisation with a Mobile Robot to Assist the Elderly with Mild Cognitive Impairments</td>
<td>George Broughton, Tomáš Krajník, Manuel Fernandez-Carmona, Grzegorz Cielniak and Nicola Bellotto</td>
<td>366</td>
</tr>
<tr>
<td>ViewBricks: A Participatory System to Increase Social Connectedness for the Elderly in Care Homes</td>
<td>Xu Lin, Kai Kang, Cun Li, Jun Hu, Bart Hengeveld, Matthias Rauterberg and Caroline Hummels</td>
<td>376</td>
</tr>
<tr>
<td>Statistical and Computational Study of the Photomotor Reflex in Diabetic Patients for Recognition of Specific Characteristics</td>
<td>David Asael Gutiérrez Hernández, Víctor Manuel Zamudio Rodríguez, María Trinidad Galván González, José Gerardo Cárdenas Solís, Sergio Uribe López and Carlos Lino Ramírez</td>
<td>396</td>
</tr>
</tbody>
</table>
POSEIDON – Personalized Smart Environments to Increase Inclusion of People with Down’s Syndrome – Results of the First and the Extended Pilot Study

E. Schulze and A. Engler

International Workshop on Computation Sustainability, Technologies and Applications (CoSTA’2016)

Introduction to CoSTA’2016

Fábio Silva, Shin’ichi Konomi, Rui Costa, Cesar Analide and Paulo Novais

Monitoring Electrodermal Activity for Stress Recognition Using a Wearable Arturo Martínez-Rodrigo, Antonio Fernández-Caballero, Fábio Silva and Paulo Novais

RFID Based People-Object Direction of Pass Detection

Raúl Parada, Joan Melià-Seguí and Rafael Pous

A Conceptual Framework for Occupant-Centered Building Management Decision Support System

Sanja Lazarova-Molnar and Hamid Reza Shaker

Gamification and the Improvement of Urban Sustainability

Fábio Silva and Cesar Analide

Internet of Things for Energy Efficiency and Personalization Joao C. Ferreira

Creative Science 2016 (CS’16) and Cloud-of-Things 2016

Creative Prototyping as an Inter-Dimensional Portal Between Disciplines Tiina Kymäläinen

We Think – Therefore We Are

Jim Hensman

The Pain Gods

Jennifer O’Connor

Diegetic Innovation Templating

Ping Zheng and Vic Callaghan

Dark Future Precedents: Science Fiction, Futurism and Law Michael Bennett and Brian David Johnson

From Imagination to Innovation: A Creative Development Process Hsuan-Yi Wu and Vic Callaghan
i-Ribbon: Social Expression Through Wearables to Support Weight-Loss Efforts

Nan Yang, Gerbrand van Hout, Loe Feijs, Wei Chen and Jun Hu

524

Workshop on Wireless Body Area Networks for Personal Monitoring in Intelligent Environments (WBAN-PMIE)

Workshop on Wireless Body Area Networks for Personal Monitoring in Intelligent Environments

Daniel Lai and Rezaul Begg

537

Characterization of Ultrasonic Wave Propagation for Intra-Body Communication

Francois Rivet, Samuel Redois and Yann Deval

538

Intrabody Communication for Implants in Body Area Network Scenarios

Assefa K. Teshome, Behailu Kibret and Daniel T.H. Lai

544

Effect of Changing Body Fluid Levels on Intrabody Signal Propagation

Clement Ogugwa Asogwa and Daniel T.H. Lai

552

Neonatal Seizure Detection with Wearable Sensor System

Hongyu Chen, Mengru Xue, Sidarto Bambang Oetomo and Wei Chen

560

A Low Cost, Wireless Spinal Motion Measurement Device

Samuel A. Sobey, Paul N. Grimshaw, Steven Grainger, William S.P. Robertson, Isaac Taylor and Melissa Weston

570

Tutorials

Introduction to the Summaries of the Tutorial Sessions Held at IE’16

Gordon Hunter

579

Designing Data Visualizations for Intelligent Environments: A Human Factors Primer

B.L. William Wong

580

Deciphering the Growing Docker Ecosystem

Pethuru Raj

590

Prototyping IoT-Based Applications for Ubiquitous Smart Environments and Healthcare

Jeanette Chin and Alin Tisin

604

The Emergence of Affective and Physiological Computing in Ambient User Centred Systems

Faiyaz Doctor

605

End-to-End Security for the IoT

James Dooley

606

Intelligent Automation – Smart Manufacturing

Raphael Grech

607